Heterodimerization, trafficking and membrane topology of the two proteins, Ostα and Ostβ, that constitute the organic solute and steroid transporter

نویسندگان

  • Na LI
  • Zhifeng CUI
  • Fang FANG
  • Jin Young LEE
  • Nazzareno BALLATORI
چکیده

Co-immunoprecipitation studies using mouse ileal proteins and transfected HEK-293 (human embryonic kidney-293) cells revealed that the two proteins, Ostα and Ostβ, which generate the organic-solute transporter are able to immunoprecipitate each other, indicating a heteromeric complex. Mouse ileal Ostα protein appeared on Western blots largely as bands of 40 and 80 kDa, the latter band consistent with an Ostα homodimer, and both of these bands were sensitive to digestion by the glycosidase PNGase F (peptide:N-glycosidase F). Ostβ appeared as bands of 17 and 19 kDa, and these bands were not sensitive to PNGase F. Both the 40 and 80 kDa forms of Ostα, and only the 19 kDa form of Ostβ, were detected among the immunoprecipitated proteins, indicating that the interaction between Ostα and Ostβ is associated with specific post-translational processing. Additional evidence for homodimerization of Ostα and for a direct interaction between Ostα and Ostβ was provided by BiFC (bimolecular fluorescence complementation) analysis of HEK-293 cells transfected with Ostα and Ostβ tagged with yellow-fluorescent-protein fragments. BiFC analysis and surface immunolabelling of transfected HEK293 cells also indicated that the C-termini of both Ostα and Ostβ are facing the intracellular space. The interaction between Ostα and Ostβ was required not only for delivery of the proteins to the plasma membrane, but it increased their stability, as noted in transfected HEK-293 cells and in tissues from Ostαdeficient (Ostα−/−) mice. In Ostα−/− mice, Ostβ mRNA levels were maintained, yet Ostβ protein was not detectable, indicating that Ostβ protein is not stable in the absence of Ostα. Overall, these findings identify the membrane topology of Ostα and Ostβ, demonstrate that these proteins are present as heterodimers and/or heteromultimers, and indicate that the interaction between Ostα and Ostβ increases the stability of the proteins and is required for delivery of the heteromeric complex to the plasma membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pleiotropic functions of the organic solute transporter Ostα-Ostβ.

The heteromeric organic solute transporter alpha-beta (Ostα-Ostβ) is expressed at relatively high levels on the basolateral membrane of enterocytes, where it plays a critical role in the intestinal absorption of bile acids and the enterohepatic circulation. However, this transporter is also expressed in nearly all human tissues, including those that are not normally thought to be involved in bi...

متن کامل

The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes

BACKGROUND & AIMS The organic solute transporters alpha and beta (OSTα-OSTβ) form a heterodimeric transporter located at the basolateral membrane of intestinal epithelial cells and hepatocytes. Liver injury caused by ischaemia-reperfusion, cancer, inflammation or cholestasis can induce a state of hypoxia in hepatocytes. Here, we studied the effect of hypoxia on the expression of OSTα-OSTβ. ME...

متن کامل

Ostα-/- mice exhibit altered expression of intestinal lipid absorption genes, resistance to age-related weight gain, and modestly improved insulin sensitivity.

The organic solute transporter OSTα-OSTβ is a key transporter for the efflux of bile acids across the basolateral membrane of ileocytes and the subsequent return of bile acids to the liver. Ostα(-/-) mice exhibit reduced bile acid pools and impaired lipid absorption. In this study, wild-type and Ostα(-/-) mice were characterized at 5 and 12 mo of age. Ostα(-/-) mice were resistant to age-relate...

متن کامل

Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich‐cultured human hepatocytes

Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FX...

متن کامل

Ostα−/− mice are not protected from western diet‐induced weight gain

Organic solute transporterα-OSTβ is a bile acid transporter important for bile acid recycling in the enterohepatic circulation. In comparison to wild-type mice, Ostα(-/-) mice have a lower bile acid pool and increased fecal lipids and they are relatively resistant to age-related weight gain and insulin resistance. These studies tested whether Ostα(-/-) mice are also protected from weight gain, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007